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Objectives: Patients’ characteristics that could influence graft survival may also exhibit

non-constant effects over time; therefore, violating the important assumption of the Cox

proportional hazard (PH) model. We describe the effects of covariates on the hazard of

graft failure in the presence of long follow-ups.

Study Design and Settings: We studied 915 adult patients that received kidney

transplant between 1984 and 2000, using Cox PH, a variation of the Aalen additive

hazard and Accelerated failure time (AFT) models. Selection of important predictors was

based on the purposeful method of variable selection.

Results: Out of 915 patients under study, 43% had graft failure by the end of the

study. The graft survival rate is 81, 66, and 50% at 1, 5, and 10 years, respectively. Our

models indicate that donor type, recipient age, donor-recipient gender match, delayed

graft function, diabetes and recipient ethnicity are significant predictors of graft survival.

However, only the recipient age and donor-recipient gender match exhibit constant

effects in the models.

Conclusion: Conclusion made about predictors of graft survival in the Cox PH model

without adequate assessment of the model fit could over-estimate significant effects. The

additive hazard and AFT models offer more flexibility in understanding covariates with

non-constant effects on graft survival. Our results suggest that the period of follow-up

in this study is long to support the proportionality assumption. Modeling graft survival

at different time points may restrain the possibility of important covariates showing

time-variant effects in the Cox PH model.

Keywords: graft survival, time varying covariate effect, Cox PH model, purposeful selection, additive hazard

models

1. INTRODUCTION

The incidence and prevalence of end-stage kidney disease (ESKD) have significantly increased
in developing countries, such as South Africa (1). Patients with ESKD have an increased risk of
premature death on chronic dialysis therapy and for long term survival, kidney transplantation is
the treatment of choice (2). A successful kidney transplant increases the life-expectancy and quality
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of life of a patient with ESKD. Despite advances in the
use of immunosuppressants, recipient and donor factors still
compromise the efficacy of a kidney transplant outcome,
especially for long-term survival (3, 4). This has brought
increased interest in identifying these factors using statistical
methods, such as survival analysis. In kidney transplant studies,
time-to-graft failure or patient death is usually the event
of interest.

Beyond the Kaplan-Meier (KM) estimator, most kidney
transplant studies employ the Cox Proportional hazard (PH)
model to analyse whether individual patients or donor’s
characteristics influence the probability of Graft survival (GS)
or graft failure (GF). The framework of proportional hazard
assumption under the Cox PH model states that factors under
study act multiplicatively on the baseline hazard function and
either increase or decrease the baseline function at a constant
rate (5). This fundamental assumption may not be tenable in
kidney transplant studies because the effect of recipient age
may impose a strong effect immediately after kidney transplant
but gradually fades with time. In this situation, a hazard ratio
(HR) does not suggest the same magnitude or size on the
survival time. Therefore, the variable is said to have a time-
varying effect on survival. Assessing the PH assumption should
be the fundamental aspect in the use of the Cox PH model
because violation of this assumption could lead to misleading
of the resulting parameter interpretation (6). However, if the
assumption of PH is violated for any covariate, a more flexible
model which does not condition on constant proportional could
offer more insight about the relationship between graft survival
and the risk factors.

One of these models is the Aalen’s additive hazard model
(7), which specifies how the covariates impact additively on the
hazard, but the effects of the covariates are allowed to vary
freely over time. As, however, the closest version of an additive
hazard model which is analog to the Cox hazard model is the
Lin and Ying (8) model. It assumes the covariates act additively
upon an unknown baseline hazard and their effects are constant.
Conversely, the effects of the covariates in the model may be
constant or time-varying. McKeague and Sasieni (9) proposed a
version of the additive model that accommodates both constant
and time-varying covariates effects. Although several authors
advocated and used the additive hazard models for survival time
data, however, the additive hazardmodel is rarely used in survival
data analysis, more especially in kidney transplant research due
to lack of familiarities with the model (10, 11). Similarly, the
parametric accelerated failure time (AFT) models accommodate
time-varying covariates effects. The effect of covariates in an AFT
model is constant and act multiplicatively on the survival times
(12), and the covariates accelerate or decelerate the occurrence
of events of interest i.e., a predictor effect acting to either
accelerate or decelerate graft survival time. The formulation
of these models allows the estimation of a time ratio (TR)
and the regression coefficients are estimated with the method
of full maximum likelihood. Parametric survival models were
considered by Hashemian et al. (13), in analyzing survival after
kidney transplant and noted that parametric survival models
provide amore suitable description of the survival data compared
with the Cox PH model.

This study is motivated by previous studies on the statistical
analysis of kidney transplants done in South Africa (14–
16). These studies focused on the comparison of patients
and GS or identification of factors that influence survival
using the KM estimator and standard Cox PH model. As
an extension to these previous studies, this study aims to
use a more rational and methodical approach to (i) identify
factors that influence long-term GS using purposeful model
building strategy, (ii) affirm the importance of assessing the
PH assumption in Cox PH model, and finally (iii) show
the need to consider additive hazard and AFT models as a
complement to the Cox model when the PH assumption is
not tenable.

2. PATIENTS AND METHOD

We studied patients ≥18 years that underwent their first
kidney transplant at Charlotte Maxeke Johannesburg Academic
Hospital between 1984 and 2000. This is a retrospective
cohort study, which involves 915 adult patients. Patients were
followed-up after transplant, and information detailing patients,
donors and transplant characteristics were recorded. GS was
defined as the period from transplant to GF, loss to follow-
up or end of the study. That is patients were right-censored
if the graft did not fail by the end of the study or the
patients were lost to follow-up (graft failure: 1, censored or
alive: 0). Deaths with functioning grafts were not captured
in this study. GF rates were computed as the ratio of the
number of failed grafts to patient-years (PY) of follow-up and
expressed as failure rates per 1,000 PY. Predictor variables
or covariates for inclusion in this study were identified from
literature using factors shown to significantly influence graft
survival (16–18).

The covariates considered in this study are not time-
dependent because they were only measured at the beginning
of the study. There is no relationship between each variable
missingness and the values of the variable or other variables in
the study. Nonetheless, we numerically verified the assumption
of missing completely at random using the Little’s test of
MCAR (19). MissForest based imputation method (20) was
used to replace the missing data with reasonable values.
MissForest is a non-parametric imputation method that can
simultaneously impute different types of variables and its
algorithm is based on random forest. There is no need to
specify the tweaking parameter or the distribution of the data
in the algorithm. For each variable with missing observation,
the algorithm fits a random forest model using the rest of
the variables in the dataset and then predict the missing
values for that variable. The imputation procedure continuously
run interactively and performance between iterations are
assessed until a stopping criterion is reached. This is done
in a repeated approach for all the variables with missing
value in the dataset. For the continuous variable (donor
age) with missing value, we assessed the performance of
the imputation algorithm using the normalized root mean
square error and for the categorical variables with missing,
we used the proportion of falsely classified entries (21). The
data were summarized and relevant information available for
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FIGURE 1 | Flowchart of data extraction and study design.

the patients were extracted. The analysis steps are described
in Figure 1.

3. SURVIVAL ANALYSIS METHODS

Let Ti be a random variable that represents GF time for
patient i with characteristics Xi, a p-dimensional covariate
vector. Suppose Ci denotes right censoring times, the
distribution of Ci is independent of Ti such that min(Ti,Ci)

is observed. Typically, a survival dataset Dm consists of m
i.i.d. representative observations (Ti, δi,Xi), i = 1, . . . , n and
δi = I [Ti ≤ Ci, δ = 1 or Ti > Ci, δ = 0] is defined as
censoring indicator.

3.1. Cox Proportional Hazard Model
The Cox PH model was used to analyse the effect of the study
predictors on GS. The purposeful method of variable selection
employed in this study was based on the Cox PH model (5).
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First, the effects of all the study covariates on graft survival were
assessed univariately with the Cox PH model (22). If Ti follows
the Cox PH model, then the hazard function for Ti at time t > 0
conditional on Xi is given by

h(t|Xi) = h0(t) exp(X
′
iβ), (1)

where h0(t) is arbitrary, the unspecified non-negative function of
time known as baseline hazard. It corresponds to the hazard when
all predictor variables are equal to zero. β denotes the vector of
the regression coefficients, which is estimated using the partial

likelihood method. The term exp(X
′
β) depends on covariates,

but not time. Significant variables at a 25% level of significance in
the univariable analysis were included in the multivariable Cox
PH model as applied by Hosmer et al. (5) and Bursac et al. (23).
Variables were excluded from the model sequentially if they were
neither significant predictor of graft survival nor confounders.
The procedure for the purposeful method of variable selection is
detailed in Hosmer and Lemeshow (5). Under the Cox PHmodel,
a continuous covariate is assumed to have a log-linear functional
form. Sometimes the effect of a covariate may not be in a linear
association with the log-hazard. Hence, assuming a linear effect
when a non-linear effect is applicable results in misspecification,
which definitely affects the estimated coefficients and standard
errors. The functional form of the continuous covariates was
assessed using the plot of martingale residual from a null model
and cumulative sums of martingale residual plot (24–26).

One restrictive assumption of the Cox PH model is the PH
assumption. The hazard of two individuals with covariates X1

and X2 is said to be proportional when the hazard ratio is

constant over time. That is, HR = h(t,X1)
h(t,X2)

=
h0(t) exp(βX1)
h0(t) exp(βX2)

=

exp(βX1)
exp(βX2)

= exp
{

β(X1 − X2)
}

. This implies that the ratio of

the two hazards remains proportional or constant over time.
When the hazard ratio (HR) of a variable is not constant over
time, the covariate is said to have a non-proportional or time-
varying effect on survival, which suggests that the effect of
the covariate changes over time. Test and graphical methods
based on scaled Schoenfeld residuals (rwi = nevar(β̂)ri) and
technique based on cumulative sums of martingale residuals
(U(β̂ , t) =

∑n
i=1 XiM̂i(t)) (25, 27) were used to verify the

validity of proportionality for each selected covariate in the final
model. The scaled Schoenfeld residuals vs. time were plotted
for each covariate. Under common definition, these residuals
are expected to randomly distribute around the zero line slope
if proportionality is valid. Also, the observed processes plotted
along with 50 simulated processes under the null hypothesis of no
model misspecification were compared. The non-proportional
hazard assumption for any covariate is revealed if the observed
processes are atypical of the simulated processes. A clear lack of
fit could be concluded for the Cox PHmodel due to time-varying
covariates effects in themodel, which violates the PH assumption.

3.2. Additive Hazard Model
To circumvent PH assumption and characterize the nature of the
time-varying covariates effects through the cumulative regression

function plots, we employed the Aalen additive hazard model,
given by

h(t|Xi) = h0(t)+ X
′

γ (t). (2)

Similar to model 1, h0 and γ represent the baseline hazard
function and vector of time-varying regression coefficients, which
may change in magnitude and even sign over time. The flexibility
of the Aalen additive hazard is tempered due to the difficulty
indirect estimation of the coefficients function. Hence, the
cumulative regression coefficients version is estimated based on
the least square estimation of the integrated coefficients βi(t) =
∫ t
0 bi(u)du, i = 1, . . . , p. These effects are graphed against time
to investigate if the covariates in model 1 have time-varying or
constant effects over time. The more beta is from 0, the higher
the impact the coefficients has had on the hazard of graft failure
over the period of follow-up. As well, a positive and a negative
slope with an increase in covariates indicate an increase and a
decrease in hazard, respectively. For a covariate with significant
effect, the confidence bands are likely not to include the zero line.
Both the Kolmogorov-Smirnov and Cramer Von Mises tests (28)
were used to assess the time-invariant effects of the covariates.
The cumulative martingale residual was used to assess the fit of
the covariates in the Aalen additive hazard model. To further
assess the nature of these covariates, we fitted a variation of model
2, given by

h(t|Xi) = h0(t)+ X
′

aγa(t)+ X
′

bγb. (3)

In this version of the additive model, γb(t) and γa represent
a vector of covariates with time-varying and constant effects,
respectively. A successive test was done to compare the result of
this model and that of the previous models.

3.3. Accelerated Failure Time Models
All the significant variables from the Cox PH model were also
used to fit AFT models. We used the shape of the hazard
function to select the appropriate AFT models, as reported
by Khanal et al. (29). The baseline hazard function profile
(Figure S1) displays a monotone decreasing hazard, which is
closer to log-logistic (when k ≤ 1), log-normal (when σ > 1)
and Weibull distributions (when γ < 1) (12). The survival

functions of the selected distributions are S(t) = 1−8

(

log t−µ

σ

)

,

S(t) =
{

1+ eθ tk
}−1

and S(t) = exp(−λtγ ). The distributions

are characterized by the location or scale (µ, θ , λ) and shape
(σ , k, γ ) parameters. In the AFT model, the effect of covariates
is constant and act multiplicatively on survival times. The log-
linear relationship between the variables and the log of survival
time is given by

logT = µ + α
′

X + σǫ, (4)

where µ is the model intercept, α is a vector of regression
coefficients quantitatively expressing the impact of each
explanatory variable on the survival time. A negative value of
α indicates that survival time increases with decreasing value
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of the explanatory variable and vice versa. The exp (α
′
X) is

usually referred to as the acceleration factor. σ is the scale
parameter and ǫ is the error term, which is assumed to have a
specific distribution, such as a logistics or normal distribution.
The deviation of logT from linearity is modeled by the error
term. The distribution T is based on the probability distribution
of ǫ, and the survival function for T can be obtained from
the survival function of the distribution of ǫ. The Akaike
information criterion defined by AIC = −2l + 2k (30), where l
is the log-likelihood of the model and k is the total number of
parameters in the model, was used to compare the fit of the AFT
models. The best performing model was used to compare the
results of the Cox PH and Additive hazard models. To draw valid
inferences from the best-performing models, Deviance residuals
were used to assess the adequacy of the selected model (5). The
deviance residual is express as

rDi = sign(rMi)
[

−2
{

rMi + δi log(δi − rMi)
}]1/2

, (5)

where the quantity rMi is the martingale residual. The sign
function defined by sign(.) takes the value −1 or +1 if its
argument is negative or positive, respectively. The deviance
residuals are normalized transformations of the martingale
residuals and have a mean of zero. If the model is valid, the
rDi are more symmetrically distributed around zero compared to
rMi. The R codes used to perform the analysis is included in the
Supplementary Material.

4. RESULTS

4.1. Descriptive Statistics
The descriptive information available for the 915 patients in
this study is summarized in Table 1. Majority of the patients
(85%) received a kidney from cadaveric donors, and white
patients accounted for 56% of the total patients in the study. The
unadjusted graft failure rates for the study variable categories are
also listed in Table 1. Most transplant cases concentrated before
1992, which is the midpoint of kidney transplantation in this
study (Figure 2A). We observed 43% cases of graft failure by the
end of the study; hence, the censoring rate is about 58%. Graft
survival at 1, 5, 10 and 15 years are 81% (95% CI: 78–84%), 66%
(95%CI: 63–70%), 50% (95%CI: 47–55%), and 37% (95%CI: 32–
42%), respectively. The median follow-up was ∼10 years, about
17% grafts failed after the 1st year of follow-up and this period
has the highest hazard rate of GF (Figures 2B–D). 18% of the
cases have missing observations in their records and there are no
missing values in the time variables. The Little’s MCAR results
show that these observations are missing completely at random
(p-value = 0.206). MissForest method of imputation was used to
address the issue of missing data in this study and the reliability
of the method was assessed. The out-of-bag errors estimated by
missForest for the continuous variable and categorical variables
are 0.02 and 0.14, respectively. This shows good performance of
missForest in imputing missing data because the values are close
to zero than 1.

4.2. Result From the Cox Proportional
Hazard Model
The first step considered in the model building procedure was
to explore the relationship between each covariate and graft
survival time, univariately. At 25% level of significance, evidence
of association with GS is suggested for some variables (Table 1).
These variables were deemed candidate for inclusion in the
multivariable model.
The multivariable model containing all the significant covariates
in the univariable analysis was fitted (Table S1). In order to
simplify the model, p-values of the covariates based on the
partial likelihood test were examined. “Donor age” has the
largest p-value (p = 0.654), which is not statistically significant.
Omitting this covariate and refitting the model results in
the likelihood ratio (LR) test of 0.202 (Table 2). This is not
significant (p = 0.653) at 5% level, indicating no improvement
over the full model. Furthermore, the change in coefficients
(1β̂) for each covariate remaining in the model was compared
with the original model, the result (Table 2) shows that donor
age is neither a significant predictor of graft survival nor a
confounder. Next, “Histological acute rejection” and “Urological
ESKD” were subsequently removed from the model. The LR
tests with p-values of 0.349 and 0.227, respectively, show that
the model without these covariates is not statistically different
from the model with these covariates (Table 2). However, the
removal of “Urological ESKD” influenced the coefficients of
“Renal disease ESKD” and “Hypertension” by more than 15%.
“Urological ESKD” would have been retained in the model
if “Renal disease ESKD” and “Hypertension” were significant
predictors of graft survival at 10% level of significance. Therefore,
we considered “Urological ESKD” as an unimportant confounder
and exclude the three variables from the model.

There is no significant change in the value of −2LL(β̂) on
deleting “inherited ESKD” and “Hypertension” from model 2,
sequentially (p-value = 0.169 and 0.145). The deletion did not
confound the relationship of any covariate remaining in the
model and graft survival. The final covariates in the multivariate
model at this stage is shown in Model 3 (Table S1).
In the next stage, “Donor recipient-gender match,” “Donor-
recipient blood group match,” and “Clinical acute rejection” that
were not significant in the univariable analysis were sequentially
added in the multivariable Model 2). Only “Donor-recipient
gender” shows a significant relationship with graft survival, with
LR test of 4.908 (p =< 0.027). Hence, we re-consider this
variable at this stage of model building (Model 4; Table 2). The
summary of Model 4 is shown in Table S1. We compared the
variables selected in the final model with an automated method
of variable selection, such as stepwise and best-subset (Table S3).
We observed that automated methods are susceptible to selecting
more variables, which are not significantly related to GS at 5–10%
significant levels.

4.2.1. Assessment of Linearity Assumption
The next step was to assess the functional form of “Recipient
age,” as the only continuous variable in the final model (Model
4, Table S1). Figure 3 shows a plot of the martingale residual
from a null model and the cumulative martingale residual. The
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TABLE 1 | Characteristics of kidney transplant recipient in CMJAH from 1984 to 2000 and partial likelihood ratio test p-value for all the study covariates.

Variable Mean (range) Event Rate per 1,000 p-value

X code Description / n (%) (95%CI)

X1 Recipient age 38.0 (18–68) <0.001

X2 Donor age 28.4 (1–65) 0.100

X3 Clinical acute rejection

No 363 (39.7) 151 71.9 (61.5–84.1) 0.400

Yes 552 (60.3) 233 79.5 (69.9–90.4)

X4 Histological acute rejection

No 772 (84.4) 337 74.0 (66.6–82.3) 0.200

Yes 143 (15.6) 47 98.5 (74.0–131.1)

X5 Donor type

Cadaveric 781 (85.4) 351 83.2 (75.0–92.4) <0.001

Living 134 (14.6) 33 40.7 (29.1–56.9)

X6 Recipient ethnicity

White 517 (56.5) 196 63.0 (54.8–72.4) <0.001

Non-white 398 (43.5) 188 95.9 (83.2–110.6)

X7 Diabetes at transplant

No 854 (93.3) 348 74.4 (66.9–82.6) 0.200

Yes 61 (6.7) 36 94.6 (93.3–130.6)

X8 Donor-recipient gender

m-m 377 (41.2) 155 71.6 (61.0–84.0) 0.600

f-f 120 (13.1) 56 85.0 (64.8–111.6)

f-m 243 (26.6) 107 81.7 (67.6–98.6)

m-f 175 (19.1) 66 77.8 (61.0–99.2)

X9 Donor-recipient blood group

Mismatched 91 (9.9) 31 63.2 (44.4–89.8) 0.300

Matched 824 (90.1) 353 77.7 (69.9–86.2)

X10 Delayed graft function

No 582 (63.6) 248 66.2 (58.5–74.9) <0.001

Yes 333 (36.4) 136 106.2 (89.7–125.7)

X11 Renal ESKD

No 519 (56.7) 235 81.7 (71.9–92.8) 0.100

Yes 396 (43.3) 149 69.3 (59.1–81.1)

X12 Hypertension ESKD

No 628 (68.6) 252 69.4 (61.4–78.4) 0.020

Yes 287 (31.4) 132 94.7 (79.9–112.3)

X13 Urological ESKD

No 846 (92.5) 361 78.0 (70.5–86.5) 0.200

Yes 69 (7.5) 23 56.1 (37.3–84.4)

X14 Inherited ESKD

No 828 (90.5) 351 79.3 (71.5–87.9) 0.060

Yes 87 (9.5) 33 54.5 (38.9–76.3)

X15 Surgical complication

No 599 (65.5) 254 67.0 (59.1–76.1) 0.040

Yes 316 (34.5) 130 90.3 (75.9–107.4)

smoothing spline fit shows evidence of linearity for this variable.
It is also obvious that the observed processes for this variable
are more typical with the 20 simulated realizations from the
null distribution with a complimentary p-value of 0.100. This
indicates that a linear term is needed for “Recipient age” in
the model.

4.2.2. Assessment of PH Assumption and Overall

Goodness-of-Fit
There was no significant two-way interaction between the
covariates in the model at 5% level of significance. We assessed
the assumption of the Cox PH model to confirm if the covariates
interpreted above only shift the baseline hazard up or down,
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FIGURE 2 | Exploratory data analysis of the transplant data showing (A) barplot of years of kidney transplantation, (B) histogram plot of graft survival time variable, (C)

KM plot of graft survival, (+) indicates censoring, and (D) Smoothed graft failure rate per 1,000 PY.

TABLE 2 | Partial likelihood ratio test indicating the effect of deleting covariates that are not significant in the multivariable analysis and their highest impact in coefficient

change for other covariates.

Model −2LL(β̂) 1(−2LL(β̂)) df p-value %1(β̂)a

Model 1 4,538.881

Model 1 − X2 4,539.082 0.202 1 0.653 5.08

(Model 1 − X2) − X4 4,539.961 0.878 0.349 5.67

((Model 1 − X2) − X4) − X13) 4,541.420 1.461 1 0.227 31.91

((Model 1 − X2) − X4) − X13) − 4 (X11 + X12) = Model 2 4,542.927

Model 2 − X14 4,544.815 1.888 1 0.169 7.31

(Model 2 − X14) − X15 = Model 3 4,544.815 2.122 1 0.145 4.33

Model 3 + X8 = Model 4 4,539.907 4.908 3 0.027 5.50

Model 4 + X9 4,539.907 <0.001 1 0.997 0.06

Model 4 + X3 4,539.467 0.440 1 0.507 7.00

aHighest change observed in covariates coefficients after deleting each covariate.

but does not change over the lifetime of a graft. Figure S2
shows evidence of time-varying effects for some covariates in
the model, given that the curves seem not to drift apart steadily,
as should be expected in the case of constant effects. Table 3
shows the p-values of tests based on the scaled Schoenfeld and
cumulative residuals for non-proportional hazard assessment.
The results of the two tests support evidence of deviation
from the proportionality assumption as shown in Table 3. The

results are graphically illustrated for each covariate in the Cox
PH model (Figures S3, S4). These figures suggest non-constant
effects over time for the aforementioned variables. However,
when these covariates interacted with time in the extended Cox
PH model, only recipient ethnicity shows a non-constant effect
(Table S2). The non-constant effect of these covariates indicate a
lack of fit in the Cox PH model, which could lead to misleading
parameter interpretation.

Frontiers in Public Health | www.frontiersin.org 7 July 2019 | Volume 7 | Article 201

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Achilonu et al. Modeling Long-Term Graft Survival

FIGURE 3 | Linearity assumption assessment. (A) Smoothed martingale

residual plot from a null Cox PH model vs. recipient age. (B) Cumulative

martingale residuals plot vs. recipient age (p = 0.095).

TABLE 3 | Non-proportionality test in the Cox PH model, p-values for scaled

Schoenfeld residuals and cumulative residuals (*) tests.

Variable Rho Chisq p-value p-value*

Donor type −0.061 1.398 0.237 0.100

Delayed graft function −0.136 7.183 0.007 <0.001

Diabetes at transplant 0.124 5.870 0.015 0.001

Recipient ethnicity −0.067 1.741 0.187 0.005

Recipient age 0.071 2.103 0.147 0.320

Donor-recipient gender (f-f) −0.080 2.437 0.118 0.060

(f-m) −0.015 0.083 0.773 0.240

(m-f) −0.018 0.122 0.727 0.900

GLOBAL NA 25.292 0.001

Bold variables represent violation of the PH assumption.

4.3. Result From Additive Hazard Models
The covariates in model 4 (Table S1) were used to fit the Aalen
additive hazard model. The result is comparable to the Cox PH
model in identifying the risk factors of graft survival (Table 4).
However, the Kolmogorov-Smirnov test shows some evidence of
time-varying effect for Donor type and recipient ethnicity in this
table (p-values < 0.05), this is supported by Von Cramer Mises
test (result not included). The plot of the cumulative regression
coefficients for the Aalen model is shown in Figure 4. There is a
linear increase in the hazard of graft failure with an increase in
the recipient age and its confidence interval does not include the

TABLE 4 | Tests for non-significant and time-varying effects of the covariates in

the Aalen additive hazard model.

Covariates Non-significant effects Time invariant effects

Statistics p-value Statistics p-value

Intercept 3.01 0.061 0.19 0.730

Donor type 3.86 0.003 0.27 0.035

Delayed graft function 5.06 <0.001 0.23 0.217

Diabetes at transplant 3.37 0.018 0.34 0.389

Recipient ethnicity 5.01 <0.001 0.26 0.043

Recipient age 5.91 <0.001 0.01 0.518

Donor-recipient gender (f-f) 3.26 0.023 0.22 0.434

Donor-recipient gender (f-m) 2.68 0.163 0.21 0.370

Donor-recipient gender (m-f) 1.87 0.688 0.27 0.303

zero line, indicating that age has a significant effect on the hazard
of graft failure over the years of follow-up. The 95% confidence
interval for other plots include the zero line at some time point,
indicating covariates with early (e.g., Delayed graft function)
and late (donor type) significant effects on graft survival. Only
the plot for donor type has a negative effect on graft survival,
the effect at some points flattens before it steeply decreases
linearly, which by the test is an indication of a time-varying effect.
The cumulative plot for recipient ethnicity shows a curvilinear
pattern, it displays a steep increase at the beginning of the follow-
up and shows a roughly zero slope after the first 10 years. The
plot suggests a time-varying effect for recipient ethnicity and
also that this covariate may not have a late significant effect on
graft survival.

The cumulative martingale residual together with 50
simulated processes (Figure 5) under the Aalen model shows
that the covariates’ behavior is more typical with the model
(p-values > 0.05), indicating a good fit of Aalen model. The
result of the semi-parametric version of the Aalen model is
shown in Table 5, all the covariates as previously reported shows
significant effects on graft survival. For the covariates with
constant effects as suggested by the Aalen model, their estimates
are shown in Table 5.

4.4. Result From Parametric AFT Models
The AIC values of the models are 2,444, 2,492, and 2,471 for
Weibull, lognormal, and log-logistic models, respectively. The
rule is that any model that conforms to the observed data should
adequately lead to a smaller AIC. Based on this, the Weibull
model is the best-performing model. The distribution of the
deviance residuals from the Weibull model is mostly within the
range of ±3 except three observations that are slightly outside
this bound (Figure 6). The result of the Weibull model is similar
to that of the Additive hazard models in detecting the significant
predictors of graft survival and their directional effects (positive
or negative effect), although, the interpretations are not the same.
For instance, in Table 5, the semi-parametric additive hazard
model shows that female patients that received a kidney from
female donors had an increase in the hazard of 0.0327 compared
with male patients that received a kidney from male donors.
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FIGURE 4 | Estimates of cumulative hazard risk with a 95% pointwise confidence interval based on Aalen’s additive model.

Conversely, the Weibull model shows that female recipients of
a kidney from female donors had 44% lower graft survival in
comparison to male patients that received from male donors.
The Weibull models show that the influence of all the predictors
except donor type, decelerate graft survival time. Every additional
increase in age, on the average age of the recipients, is associated
with 5% decrease in graft survival, this indicates that the older the
patient, the higher the hazard of graft failure. This is similar to
what is observed in the additive hazard model. Also, the results
show that graft survival is prolonged (more than twice) among
patients that received live kidney transplant compared with those
that received a cadaveric kidney transplant.

5. DISCUSSION

In this study, 915 adult patients that underwent a kidney
transplant at Charlotte Maxeke Academic Hospital
Johannesburg, South Africa were analyzed. This study attempts
to appropriately employ more statistically justifiable strategies
in selecting the best combination of predictors that influence
long-term GS post-kidney transplantation. The method of
imputation used in this study has been shown (in studies
using different biological and medical datasets) to outperform
imputation methods, such as multivariate imputation by the
chained equation, nearest neighbor and mean imputation
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FIGURE 5 | Plot of cumulative martingale residual from Aalen additive model.

(20, 31). The Cox PHmodel is the most attractive survival model
when a set of covariates are of interest in modeling time to graft
failure. Fitting a large number of variables in this model could
add noise to the estimated quantities, resulting in collinearity
among variables and increase the cost of modeling unnecessary
predictors. The purposeful variable selection method based
on the Cox PH model becomes more complex when there are
too many predictors in the data. However, this procedure of
model building involves a combination of science, statistical
method, experience and common sense (32). The purposeful
method has been applied in previous studies (5, 23, 32).
These studies comparatively showed that purposeful variable
selection method leads to significant variables, confounding

factors and a richer model compared with other selection
methods; when prediction and identification of risk factors are
of interest.

Evaluating the PH assumption for all predictors in the Cox
PH model should be a fundamental aspect of the modeling
process when using the Cox PH model. Including variable(s) not
satisfying the PH assumption leads to an inferior fit of a Cox
model i.e., the power of tests is reduced for both variables with
constant and non-constant HR in the model. Our results provide
evidence of time-varying effects for the covariates in the Cox PH
model. This shows that it is necessary to assess this assumption
based on the fact that clinical variables effects are rarely constant
over time.
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TABLE 5 | Analysis of risk factors based on the Cox PH, McKeague and Sasieni hazard, and Weibull AFT models.

Variable Cox PH model Additive hazard model Weibull model

HR (95% CI) p-value Coefficient (se) p-value TR (95% CI) p-value

Recipient age 1.03 (1.02–1.04) <0.001 0.0023 (0.0004) <0.001 0.95 (0.93–0.97) <0.001

Donor type

Cadaveric 1

Living 0.62 (0.43–0.90) 0.012 0.001 2.40 (1.26–4.57) 0.008

Recipient ethnicity

White 1

Non-white 1.50 (1.22–1.85) <0.001 <0.001 0.49 (0.34–0.70) <0.001

Diabetes at transplant

No 1 …

Yes 1.59 (1.12–2.28) 0.010 0.0299 (0.0165) 0.054 0.45 (0.24–0.83) 0.011

Donor-recipient gender

m-m 1 …

f-f 1.48 (1.09–2.02) 0.013 0.0327 (0.0136) 0.026 0.44 (0.26–0.76) 0.003

f-m 1.25 (0.97–1.60) 0.082 0.0169 (0.0101) 0.095 0.66 (0.43–1.02) 0.060

m-f 1.16 (0.87–1.55) 0.321 0.0123 (0.0116) 0.284 0.72 (0.43–1.19) 0.196

Delayed graft function

No 1 …

Yes 1.49 (1.21–1.85) <0.001 0.0355 (0.0104) 0.001 0.49 (0.34–0.71) <0.001

Based on the Aalen’s additive hazard model, Donor type, and Recipient ethnicity have time-varying effects on graft survival, and their effects are not estimated under McKeague and

Sasieni hazard model.

FIGURE 6 | Assessment of goodness-of-fit using the plots of the deviance

residuals.

The Cox PH, additive hazard and AFT models are used in
survival to study the association between risk factors and the
event of interest in failure time data. The appropriateness of the
individual model may not be known in advance for a specific
application. The models may capture the risk process equally
or sometimes give a different result (10, 29, 33). For many
application in public health, the additive hazard may be plausible
since the result gives differences in hazard, rather than a hazard
ratio. The same applies to the straightforward interpretation of
TR as compared to HR. These models may be compared with
regards to the p-values of the covariates in the model, since
the greatness of p-value shows the power to reject the null
hypothesis (10).

We identified that factors, such as “donor age” and “acute
rejections” previously shown to be important risk factors of
GS (34–36) are neither significant nor confounders in this
study. The difference between the findings of this present
study and these previous studies could be linked to differences
in sample size (number of graft failures observed), year of
transplant, duration of follow-up and method of data analysis.
Nevertheless, it is noteworthy that the significant predictors of
GS observed in this study are in agreement with previous studies
(11, 16–18, 34, 35, 37, 38).

Prognostic assessment with the Cox PH model is generally
based on patients/donors characteristics at the time of evaluation.
These characteristics have a greater tendency to change, following
a long period of study. We have shown in this study that
when long-term follow-up is of interest, survival prediction may
be discordant with the Cox PH model. We have statistically
shown that the Cox PH model did not capture all the significant
aspects of the data analysis and did not provide adequate fit
in this study. We were able to investigate the time-varying
covariate effects with the Aalen additivemodel and fully estimates
the effects of the covariate with the AFT model. The need
to explore beyond the Cox PH model is revealed in the
Aalen plot, the plot can aide a nephrologist to understand the
pattern by which the covariates influence graft survival after
transplantation. Considering censored quantile regression model
could be alternatives when the PH assumption is not valid in the
Cox PH model.

This study has several important strengths. We have used
a rational approach in analyzing the kidney transplant data
generated from a South African transplant cohort study. The
results of this historical data analysis could help to understand
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long-term performance and progress of kidney transplant
outcome in this region, and how the risk factors influence the
survival of the graft after kidney transplant. The analysis involves
a combination of both recipients of a cadaveric and living donor
kidney transplant, focusing on graft failure because maximizing
graft is paramount important to the recipient of a new kidney and
transplant unit. We found in this study that predictors of graft
survival may exhibit time-varying effects.

On the other hand, this study also has some methodological
limitations. We found that multicollinearity is a problem in using
the purposeful method of variable selection, especially when
the covariates are highly related. Specifically, we noticed that
dropping any of the causes of ESKD influences the coefficients
of others. Taking a decision on which variable to add or retain
some times is challenging. However, because the procedure is
governed by a specific rule at each step, the choice or decision
to drop or retain any variable was critically assessed to avoid
multicollinearity in the final model. In addition, 57% censoring
observed is another limitation in this study.

6. CONCLUSION

Additive hazard and AFT models are yet to receive more
deserving attention in modeling GS after a kidney transplant.
When covariate effects involve certain patterns of heterogeneity
in kidney transplant studies, additive hazard and AFT models
could offer great flexibility in modeling GS time. The models
used in this study describe different features of the relationship
between the risk factors and graft failure. Hence, it appears
necessary to use these models complementarily to gain a more
comprehensive understanding of GS after a kidney transplant.
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